//
// Least-recently used (LRU) queue device
// Clients and workers are shown here in-process
//
// Olivier Chamoux <moc.puorgselaht.rf|xuomahc.reivilo#moc.puorgselaht.rf|xuomahc.reivilo>
#include "zhelpers.hpp"
#include <queue>
// Basic request-reply client using REQ socket
//
static void *
client_thread (void *arg) {
zmq::context_t context(1);
zmq::socket_t client (context, ZMQ_REQ);
s_set_id (client); // Makes tracing easier
client.connect("ipc://frontend.ipc");
// Send request, get reply
s_send (client, "HELLO");
std::string reply = s_recv (client);
std::cout << "Client: " << reply << std::endl;
return (NULL);
}
// Worker using REQ socket to do LRU routing
//
static void *
worker_thread (void *arg) {
zmq::context_t context(1);
zmq::socket_t worker (context, ZMQ_REQ);
s_set_id (worker); // Makes tracing easier
worker.connect("ipc://backend.ipc");
// Tell backend we're ready for work
s_send (worker, "READY");
while (1) {
// Read and save all frames until we get an empty frame
// In this example there is only 1 but it could be more
std::string address = s_recv (worker);
{
std::string empty = s_recv (worker);
assert (empty.size() == 0);
}
// Get request, send reply
std::string request = s_recv (worker);
std::cout << "Worker: " << request << std::endl;
s_sendmore (worker, address);
s_sendmore (worker, "");
s_send (worker, "OK");
}
return (NULL);
}
int main (int argc, char *argv[])
{
// Prepare our context and sockets
zmq::context_t context(1);
zmq::socket_t frontend (context, ZMQ_ROUTER);
zmq::socket_t backend (context, ZMQ_ROUTER);
frontend.bind("ipc://frontend.ipc");
backend.bind("ipc://backend.ipc");
int client_nbr;
for (client_nbr = 0; client_nbr < 10; client_nbr++) {
pthread_t client;
pthread_create (&client, NULL, client_thread, NULL);
}
int worker_nbr;
for (worker_nbr = 0; worker_nbr < 3; worker_nbr++) {
pthread_t worker;
pthread_create (&worker, NULL, worker_thread, NULL);
}
// Logic of LRU loop
// - Poll backend always, frontend only if 1+ worker ready
// - If worker replies, queue worker as ready and forward reply
// to client if necessary
// - If client requests, pop next worker and send request to it
//
// A very simple queue structure with known max size
std::queue<std::string> worker_queue;
while (1) {
// Initialize poll set
zmq::pollitem_t items [] = {
// Always poll for worker activity on backend
{ backend, 0, ZMQ_POLLIN, 0 },
// Poll front-end only if we have available workers
{ frontend, 0, ZMQ_POLLIN, 0 }
};
if (worker_queue.size())
zmq::poll (&items [0], 2, -1);
else
zmq::poll (&items [0], 1, -1);
// Handle worker activity on backend
if (items [0].revents & ZMQ_POLLIN) {
// Queue worker address for LRU routing
worker_queue.push(s_recv (backend));
{
// Second frame is empty
std::string empty = s_recv (backend);
assert (empty.size() == 0);
}
// Third frame is READY or else a client reply address
std::string client_addr = s_recv (backend);
// If client reply, send rest back to frontend
if (client_addr.compare("READY") != 0) {
{
std::string empty = s_recv (backend);
assert (empty.size() == 0);
}
std::string reply = s_recv (backend);
s_sendmore (frontend, client_addr);
s_sendmore (frontend, "");
s_send (frontend, reply);
if (--client_nbr == 0)
break;
}
}
if (items [1].revents & ZMQ_POLLIN) {
// Now get next client request, route to LRU worker
// Client request is [address][empty][request]
std::string client_addr = s_recv (frontend);
{
std::string empty = s_recv (frontend);
assert (empty.size() == 0);
}
std::string request = s_recv (frontend);
std::string worker_addr = worker_queue.front();//worker_queue [0];
worker_queue.pop();
s_sendmore (backend, worker_addr);
s_sendmore (backend, "");
s_sendmore (backend, client_addr);
s_sendmore (backend, "");
s_send (backend, request);
}
}
sleep (1);
return 0;
}